
Methane profiles from GOSAT thermal infrared spectra
Arno de Lange1 and Jochen Landgraf1

1SRON Netherlands Institute for Space Research, Utrecht, The Netherlands

Correspondence to: Arno de Lange (A.de.Lange@sron.nl)

Abstract. This paper discusses the retrieval of atmospheric methane profiles from the thermal infrared band of the Japanese

Greenhouse Gases Observing Satellite (GOSAT) between 1210 and 1310 cm−1, using the RemoTeC analysis software. Ap-

proximately one degree of information on the vertical methane distribution is inferred from the measurements with the main

sensitivity at about 9 km altitude but little sensitivity to methane in the lower troposphere. For verification, we compare the

GOSAT methane abundance at measurement sites of the Total Carbon Column Observing Network (TCCON) to methane5

profiles provided by the Monitoring Atmospheric Composition and Climate (MACC) model fields scaled to the total column

observations at the sites. Without any radiometric corrections of GOSAT observations, differences between both data sets can

be as large as 10%. To mitigate these differences, we developed a correction scheme using a principal component analysis of

spectral fit residuals and airborne observations of methane during the HIAPER Pole-to-Pole Observations (HIPPO) campaign

II and III. When the correction scheme is applied, the bias in the methane profile can be reduced to less than 2% over the whole10

altitude range with respect to MACC model methane fields. Furthermore, we show that, with this correction, the retrievals

result in smooth methane fields over land and ocean crossings and no differences are to be discerned between daytime and

nighttime measurements. Finally, a cloud filter is developed for the nighttime and ocean measurements. This filter is rooted in

the GOSAT-TIR measurements and is consistent with the cloud filter based on the GOSAT-SWIR measurements, despite the

fact that the TIR-filter is less stringent.15

1 Introduction

Methane (CH4) is, after carbon dioxide (CO2), the strongest anthropogenic greenhouse gas with an estimated total radiative

forcing of 0.97 W/m2 for 2011 with respect to the pre-industrial levels of 1750 (Myhre et al., 2013). The forcing per molecule

is ≈100 times stronger than that of carbon dioxide, but the abundance is ≈200 times lower. The current relative increase

with respect to pre-industrial background levels of 1750 is 150% for methane, as opposed to 40% for carbon dioxide. Natural20

methane sources are anaerobic environments where micro-organisms convert organic material into methane. Examples are

wetlands including swamps, boreal marshes, and tundras, but also lakes and oceans are natural methane sources. In line with

these natural processes are the cultivation of rice paddies and cattle, both anthropogenic sources. Other anthropogenic sources

include the burning of organic material (biomass burning and waste burning), and gas losses in the fossil fuel industry (Myhre

et al., 2013). For climate monitoring and prediction, it is essential to measure CH4 on a global scale and information on its25

vertical distribution may help to disentangle signals due to methane surface emissions and long-range transport.
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Satellite nadir measurements of CH4 in the thermal infrared (TIR) represent an important element of a climate observing

system because of the pronounced methane sensitivity of the measurements in the upper troposphere. Therefore, these measure-

ments can aid in the decoupling of methane emissions and transport in inverse-modeling studies. Currently five nadir-viewing

instruments in the thermal infrared are operational on satellite platforms; Atmospheric InfraRed Sounder (AIRS), aboard Aqua,

launched in 2002 (Xiong et al., 2008; Zou et al., 2016); Tropospheric Emission Spectrometer (TES), aboard AURA, launched5

in 2004 (Wecht et al., 2012; Worden et al., 2012, 2015); Infrared Atmospheric Sounding Interferometer (IASI), aboard Metop-

A and Metop-B, launched in respectively 2006 and 2012 (Razavi et al., 2009; Crevoisier et al., 2013; Cressot et al., 2014;

Siddans et al., 2016); Thermal and Near infrared Sensor for Carbon Observation - Fourier Transform Spectrometer (TANSO-

FTS) aboard GOSAT, launched in 2009. Furthermore, GOSAT-2, the successor of the GOSAT satellite, will also be equipped

with two thermal infrared bands (together covering the same wavelength range as the one TIR band in GOSAT) and a new gen-10

eration of IASI spectrometers (IASI-NG) will fly on three successive Metop-SG A satellites of the EUMETSAT Polar System

of Second Generation (EPS-SG) in the 2021-2040 time frame.

In many studies on methane retrievals from thermal infrared observations of the above mentioned satellites, a bias in the

methane product is observed. To address this bias, different approaches have been adopted. Worden et al. (2012) observes a

discrepancy between upper and lower tropospherical methane of≈ 4 % in case of TES observations and mentions uncertainties15

in temperature, calibration inaccuracies and spectroscopy errors as the main causes. A CH4/N2O proxy retrieval reduces this

bias to ≈ 2.8% but does not fully remove it. Siddans et al. (2016) also observes a bias of ≈4% and scales the methane mixing

ratios retrieved from IASI measurements. Furthermore, two additional scaling parameters are fitted for the mean residual of

respectively nadir observations and at the outer edge of the swath, to account for variations in interfering water vapor and scan

mirror errors. The resulting methane product is within 2% of HIPPO over the full altitude range. Also Crevoisier et al. (2013)20

applies a radiometric correction based on mean residuals in case of IASI measurements. Finally, von Clarmann et al. (2009)

mentions that 8 micro-windows are carefully selected for the MIPAS limb retrievals to reduce the known high bias of CH4.

The current study focuses on the retrieval of methane profiles from GOSAT observation in the thermal infrared band 1210–

1310 cm−1. Previous work by Saitoh et al. (2012); Holl et al. (2016) presented first results of GOSAT-TIR retrievals of methane,

where the measurements are radiometrically corrected using the approach of Saitoh et al. (2009). Spectral residuals in GOSAT25

are assessed with measurements of buoys and are subsequently accounted for in the retrievals. Here, the degree of signal for

the retrieval is significantly lower than 1. Moreover, Zou et al. (2016) compared the retrieval of methane profiles from GOSAT

and IASI thermal infrared measurements and observed a prevalent bias at 9 km altitude of about 3% between both satellite

retrievals.

In this study, we apply the RemoTeC retrieval tool to analyse the GOSAT-TIR measurements with a degree of freedom for30

signal (DOFS) ≈ 1 and verify the retrieval results with profiles of the Monitoring of Atmospheric Composition and Climate

(MACC) project scaled to the total column measurements of the Total Carbon Column Network (TCCON) at ground-based

measurements sites. To mitigate the observed significant biases, we developed a sophisticated correction scheme based on a

principal component analysis of spectral residuals using HIPPO (HIAPER Pole-to-Pole Observations) data as an estimate for

the atmospheric state. This correction scheme improves significantly our validation. Moreover, we achieve the consistency35
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of daytime and nighttime measurements as well as continuity of methane for land–sea crossings where the measurement

sensitivity to methane in the lower and middle atmosphere changes substantially.

The article is structured as follows: in Section 2 the GOSAT-TIR measurements are introduced, Section 3 introduces the

Tikhonov regularisation scheme to invert the measurements. Finally, Section 4 presents the bias correction scheme and its

effect on the retrievals is demonstrated.5

2 GOSAT

The Japanese satellite GOSAT (Greenhouse gases Observing SATellite) was launched in 2009 and is the world’s first satel-

lite fully dedicated to the monitoring of the two most important greenhouse gases — carbon dioxide and methane. Its main

instrument is the TANSO-FTS Fourier Transform spectrometer covering four wavelength bands; the oxygen A-band (≈
13000 cm−1), two bands in the shortwave infrared regime (≈ 5000 cm−1and ≈ 6200 cm−1), and a band in the thermal10

infrared wavelength range (≈ 600–1600 cm−1). This study focuses only on the retrieval of methane for the thermal infrared

(TIR) band, employing the spectral window 1210–1310 cm−1. TANSO-FTS has an instantaneous field of view of ≈ 10 km

allowing for high spatial resolution measurements with at the same time a sparse spatial sampling. Here, the distance between

two consecutive measurements is up to several 100 km.

Over the coarse of the mission, JAXA (Japan Aerospace Exploration Agency) has released several level 1B data versions,15

and in this study v16x160 of L1B data has been used. For the TIR band, this version contains important updates with respect

to previous versions (such as updated radiometric correction parameters, polarization effects, and reference blackbody emis-

sivity) and is virtually identical to the most recent version v201202. For further details on the instrument, its calibration, and

performance, we refer to Kuze et al. (2009, 2014, 2016).

3 Retrieval20

To infer methane profiles from GOSAT-TIR measurements, a forward model F is needed, that simulates the radiance measure-

ment r as function of the atmospheric state vector,

r = F (x,b) + ey, (1)

where ey comprises forward model error and instrument error including the measurement noise. The state vector x contains

all parameters to be retrieved from the measurement and consists of the methane profile (defined over 12 layers at equidistant25

pressure levels), the skin temperature, a spectral shift, and four scaling parameters for the total columns of H2O, HDO, N2O,

and an effective total H2O column to calculate the water-continuum independently from the water vapour absorption lines.

The forward model parameter b symbolises all model parameters that require prior knowledge, such as instrument parameters,

atmospheric pressure and temperature profiles.
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3.1 Forward model

To simulate line-by-line radiance spectra at the top of the model atmosphere, we account for the Planck radiation of the

Earth surface and its atmosphere as radiation source and ignore the solar contribution to the spectrum analogous to e.g.

Wassmann et al. (2011). For a non-scattering atmosphere, the down-welling radiation is reflected by the Earth surface as-

suming isotropic Lambertian reflection. The down-welling is calculated by the means of a 4-point Gaussian quadrature. The5

wavelength-dependent emission by the Earth’s surface is a function of surface temperature and the surface emissivity. Here, the

surface reflection of down-welling atmospheric radiation is governed by the emissivity, following Kirchhoff’s law. We deter-

mine the initial surface emissivity over land with the High Spectral Resolution Algorithm developed by Borbas (Borbas et al.,

2007; Borbas and Ruston, 2010) using the University of Wisconsin Baseline Fit (UW-BF) Emissivity Database (Seemann et al.,

2008) as input. For water surfaces, we use the IRSSE model by van Delst and Wu (2000) to calculate the surface emissivity10

in RemoTeC. This model is an update of Wu and Smith (1997) and the calculated emissivity is a function of sea-roughness

as determined by the wind speed, viewing angle, and wavelength of the radiation. Furthermore, we consider atmospheric ab-

sorption by H2O, CH4, N2O, and CO2 from the HITRAN 2008 database (Rothman et al., 2009) and describe atmospheric

continuum absorption using the model by Mlawer et al. (2012) to account for broad-band contributions from water, carbon

dioxide, oxygen, nitrogen, and ozone. Here the continuum contribution by water is calculated separately, including the foreign15

and self continuum. The surface temperature and wind speed as well as the water vapour and temperature profile of the atmo-

sphere, needed to initialise the retrieval, are taken from European Centre for Medium-Range Weather Forecast (ECMWF) ERA

interim data set (Dee et al., 2011). The CH4 and N2O profiles are adapted from MACC-II (Bergamaschi and Alexe, 2014), and

CO2 from CarbonTracker CT2013 (Peters et al., 2007; CarbonTracker website).

Finally the line-by-line spectra are degraded to the spectral resolution of the sensor using TANSO-FTS spectral response.20

Numerically, the forward model is implemented in the RemoTeC retrieval tool (Butz et al., 2011; Schepers et al., 2012) to

benefit from the overall processing properties of this framework.

3.2 Inversion

The goal of a retrieval is to determine the atmospheric state vector x in Eq. (1) by inverting the forward model F . The RemoTeC

inversion module is described in detail by Butz et al. (2011) and in this section we summarise the inversion aspects that are25

relevant for this study.

Since the forward model F is generally not linear in the state vector x, Eq. (1) is inverted with a Gauss–Newton iteration

scheme. This means that F is linearised in each iteration step by a Taylor expansion around the solution of the previous step,

starting with a first guess state vector x0. Equation (1) can be rewritten as

y = Kx + ey, (2)30

where y = r−F (xi−1)+Kxi−1 is the so-called measurement vector with xi−1 the state vector of the previous iteration step

and K is the Jacobian matrix.
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To infer a vertical methane profile from GOSAT-TIR measurements represents an ill-posed problem requiring regularisation.

Several techniques have been developed to solve such problems and in this study we employ 0-th order Tikhonov regularisation

(Tikhonov, 1963; Phillips, 1962; Twomey, 1963):

xγ = min
x

(
‖(Kx−y)‖2 + γ2‖x‖2

)
, (3)

where xγ is the solution vector of the minimisation problem, ‖(Kx−y)‖2 is the least squares norm and ‖x‖2 is the side5

constraint. γ is the regularisation parameter and has to be carefully chosen to balance the two contributions of the cost function.

In this study, we employ the L-curve paradigm to find the appropriate value for the regularisation parameter (Hansen, 1992),

which is discussed extensively in the literature (O.P. Hasekamp, 2001; Steck, 2002; Butz et al., 2011). The solution of Eq. (3)

is

xγ = Dy, (4)10

where

D =
(
KTK + γ2I

)−1
KTS−

1
2

y , (5)

is the pseudo-inverse of K or the contribution matrix, Sy the measurement noise covariance matrix and I represents the unity

matrix. Moreover, the retrieval noise covariance matrix is given by

Sx = DSyDT, (6)15

where Sy is measurement noise covariance.

The retrieved vector xγ is a weighted average of the true atmospheric state vector xtrue

xγ = Axtrue + ex, (7)

due to the required regularisation. Here A = DK is the averaging kernel and ex = Dey is the error in the state vector caused

by measurement errors. Effectively, the averaging kernel degrades the true profile to the vertical resolution of the retrieval and20

also defines the null-space contribution of the true state vector xtrue, namely

xnull = (I−A)xtrue, (8)

comprising the contribution of the state vector, that cannot be inferred from the measurement.

Figure 1 shows a typical averaging kernel for GOSAT-TIR retrievals. It indicates a peak around 9 km, and the retrieval

sensitivity drops quickly for altitudes close to surface. This loss in sensitivity to methane concentrations at low altitudes can25

be understood as follows. Line features only show up in the spectrum if the local photon field is not at equilibrium with the

atmospheric radiance corresponding to the Planck curve governed by the ambient temperature. In general, the skin temperature

of the Earth is similar to the temperature of the lowest layers of the atmosphere, and the radiance emitted by the Earth’s surface
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Figure 1. A typical averaging kernels for GOSAT-TIR daytime measurements over land. The colour coding is such that dark colours cor-

respond to the averaging kernels at high altitudes and the bright colours to low altitudes. The numbers next to the curves refer to the

corresponding atmospheric layer index as is indicated on the left side of the graph.

is in accordance with the radiances by those atmospheric levels. So, molecular line features are only weakly imprinted on the

recorded spectrum, and hence, the sensitivity is very limited.

The degree of freedom for signal (DOFS) is defined by

DOFS = TrA, (9)

and can be interpreted as the amount of independent pieces of information that can be retrieved from the measurement. In5

the case of GOSAT-TIR retrievals the DOFS is ≈ 1.0 for scenes with a limited temperature contrast (nighttime measurements

or daytime measurements over the ocean) and ≈ 1.1 for daytime measurements over land with on average a slightly higher

temperature contrast.
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When one considers the retrieved profile xγ in Eq. (3) as the methane data product, one has to account for the reduced

retrieval sensitivity given by the averaging kernel. Alternatively, one may consider the vertical profile after adding an estimate

of the null-space contribution to xγ , namely

xCH4 = xγ + (I−A)xapr, (10)

with an a priori estimate of the true profile xapr coming from e.g. an independent measurement or a chemical transport model5

forecast. For the purpose of our study, it is also valuable to calculate the total methane column cCH4 from Eq. (10), namely

cCH4 = CxCH4 , (11)

where C is the column operator, effectively summing all partial columns in xCH4 . This implies that xCH4 is given in column

units, e.g. cm−2. To indicate the actual retrieval sensitivity the so-called column averaging kernel is a useful quantity, defined

by the averaging kernel A and column operator C (Borsdorff et al., 2014)10

Acol = CA, (12)

as well as the corresponding retrieval error variance

sCH4 = CSxCT. (13)

A typical column averaging kernel for land and ocean scenes at daytime and nighttime is depicted in Fig. 2. It shows a clear

drop-off in sensitivity towards the lower layers of the atmosphere and also the enhanced sensitivity to the lower layers for15

daytime measurements over land scenes can be discerned. This enhancement is because of the temperature contrast, which is

larger for daytime than for the nighttime measurements and larger for measurements over land than over the ocean.

A pirori knowledge on methane has a significant impact on the profile xCH4 , which is indicated by the fact that the null-

space contribution of the integrated methane column is typically in the order of 30%. Hence, the reference profile must be of

sufficient quality not to govern the uncertainty in xCH4 .20

3.3 Validation approach

Ideally, the validation of the retrieved GOSAT methane profile relies on independent validation measurements of the vertical

methane distributions. A promising data source of validation is given by AirCore balloon soundings reaching a height up to

30 km (Karion et al., 2010). However, the development of an extended observation framework is still on-going and to this

day the number of usable soundings is very limited causing poor statistics for the validation. Therefore, we decided not to25

consider these observations in our study. Another validation possibility is to use airborne measurements within the HIPPO

(HIaper Pole to Pole Observations) project conducted in the years 2009–2011. Here methane profiles are measured up to

≈ 13 km. In our study, however, these measurements are used to radiometrically correct the GOSAT measurements, as will

be shown in Section 4, and can therefore not be used for validation purposes. Finally, during ascent and decent of commercial

airlines the methane distribution is measured in-situ close to airports up to typical flight heights of 10 km. Two examples of30
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Figure 2. The average of all column averaging kernels in this study for different scenes and measurement times. Daytime and nighttime

measurements over land are depicted in respectively orange and black curves and over the ocean in dark blue and cyan curves.

such measurement frameworks are CONTRAIL (Comprehensive Observation Network for Trace gases by Airliner) (Machida

et al., 2008; Inoue et al., 2014) and CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an

Instrument Container) (Brenninkmeijer et al., 2007). Obviously, these measurements are limited in altitude to typically 10 km

and therefore lack an important part of the profile to which the GOSAT-TIR measurement is sensitive to. All in all, high-

quality measurements of methane profiles are sparse and due to the required co-location between GOSAT measurements and5

the available reference measurements, we estimate the number of validated profiles to be too limited for a validation of our

product.

A common approach to validate methane total column retrieval from shortwave infrared measurements is to compare the re-

trieved column to co-located ground-based measurements of the Total Carbon Column Observing Network (TCCON) (Wunch

et al., 2011). Here, both the ground-based and satellite observations show homogeneous methane retrieval sensitivity over all10
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atmospheric altitudes, leading to highly accurate estimates of the total column of methane rather than a profile. Because of

the lack of other validation measurements, we decided to use these data for our product validation. In first instance, we derive

a methane profile employing the MACC-II repository (Bergamaschi and Alexe, 2014), which delivers global methane fields

on a daily basis, to extract an a priori estimate xapr. This estimate is subsequently scaled to the total columns of co-located

TCCON measurements. The profile is used to derive the total methane column as described by Eq. (11) and so the comparison5

with TCCON total columns ensures the same null-space contribution in the GOSAT TIR and the validation estimate of the

total column. Moreover, the MACC/TCCON profile can be used to compare to the methane profile xγ in Eq. (7) and xCH4 in

Eq. (10).

3.4 CH4 retrievals

We start our validation analysis comparing the retrieved total methane columns from GOSAT-TIR measurements over TCCON10

stations with the corresponding measurements at the site. To minimise the interfering effect of scattering by clouds, hazes,

cirrus, and/or aerosols, in this study we pertain to clear-sky conditions. This implies that a cloud-filter needs to be employed.

Although, within the RemoTeC-framework, a well-tested cloud filter is available for daytime measurements over land based

on SWIR and NIR spectra, there is no equivalent for the TIR spectrum. Particularly to filter nighttime measurements or mea-

surements over the ocean, one has to resort to a cloud filter rooted in the TIR spectra. Therefore, we make use of the fact that15

clouds generally change the effective light path by scattering and the retrieved columns differ from the actual columns. For

cloud clearing of the data set, we consider the difference between the retrieved N2O total column and the MACC N2O total

column. To account for an overall bias in the MACC N2O columns, we define a dynamical mean x of the N2O column errors

such that cumulative number of converged retrievals in the range [x−3%,x+3%] are maximised. All data within this interval

are considered in the successive analysis to be cloud filtered. In Section 4.1 the cloud filter is investigated in more detail.20

Moreover, data are filtered using a stringent normed Pearson’s chi-squared criterium of χ2 < 3.0 for the spectral fit quality.

Figure 3 depicts the comparison between retrieved total methane columns from GOSAT-TIR measurements and co-located

TCCON observations. Although, the GOSAT methane results capture the seasonal variation, they also clearly show a large and

persistent bias of about 4.6%.

This bias shows little variation when compared to nine other TCCON sites (Bialystok, Bremen, Darwin, Lauder, Orleans,25

Park Falls, Reunion, Sodankyla, and Wollongong) as depicted in Figure 4. The error bars indicate the 1σ standard deviation

of the difference between GOSAT and TCCON and correspond to a typical value of 2%. The propagation of the measurement

noise into the retrieved total column amounts to retrieval error sXCH4 ≈ 0.8% and explains only a part of spread. The average

bias is +4.6%, whereas the station-to-station variation in the bias is much smaller (0.4%). The accuracy of the total columns

from the MACC repository, used as prior in the retrieval product, is also estimated to be of the order of 2%. This estimation30

is based on the study in Landgraf et al. (2016) where methane fields from the TM5 model are compared against GOSAT-

SWIR retrievals and it was found that on average the standard deviations are well within 1%, with sporadic outliers up to

3%. It is noted that the TM5 model runs were conducted with methane constraints only taken from the measurements of the

NOAA-ESRL global monitoring network, whereas within the MACC repository also the GOSAT-SWIR measurements are

9
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Figure 3. Total methane columns as a time series over Lamont. In black the GOSAT-TIR retrievals are shown. In respectively orange and

cyan, the corresponding (non-scaled) MACC and TCCON total columns are shown.

taken as input. Therefore, we believe that the estimation of 2% on the accuracy of the total columns from the MACC repository

is reasonable, even on the safe side. Since it typically contributes for 30% to the retrieved total column, it contributes with

≈ 0.6% to the error budget. Finally, the precision and accuracy of the methane TCCON measurements are both estimated to

be < 0.3% (TCCON Data Description website). Overall these relatively small error contributions implies that further sources

of uncertainties exist, e.g. radiometric calibration and forward model errors.5

To better understand the induced errors, we compare the average GOSAT-TIR methane profile xCH4 over the TCCON site

Bialystok with the averaged MACC/TCCON profile in Fig. 5. The deviation between the two profiles peaks around 9 km,

which corresponds to the altitude of maximum retrieval sensitivity. This suggests that the altitude dependent bias in this figure

finds its origin in the altitude dependent sensitivity. The depicted difference is indicatory for all TCCON stations.

10
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Figure 4. Average of the relative total methane column with respect to TCCON measurements for GOSAT-TIR retrievals (black) and the

(non-scaled) MACC prior (orange). The bars indicate the spread in the data ensemble.

Therefore, it is insightful to compare the retrieved GOSAT-TIR profiles xγ in Eq. (4) with the smoothed MACC profile by

applying the averaging kernel as indicated in Eq. (7). Figure 6 shows corresponding results for the TCCON site Bialystok. The

bias on xγ is much more constant over altitude, but still shows some striking vertical features with biases peaking around 9 km

with the highest sensitivity to methane, a negative lobe towards lower altitudes and a sharp drop-off for the upper layers of the

atmosphere.5

To survey the retrieval performance at all TCCON sites mentioned in Table 1, Figure 7 shows the error histogram of the mean

retrieval bias at 2 and 9 km. Overall we see a similar behaviour for all TCCON sites and the station-to-station bias variation is

small (≈ 0.6%). Moreover, we find an interesting variation of biases for different types of observations, where we distinguish

between daytime and nighttime observations and land and ocean scenes. In Fig. 7, the bias at 9 km is systematically lower for

the daytime-land measurements than for the other three scenes, who are amongst themselves very comparable. At 2 km this10
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Figure 5. (left) Average methane profile retrieved from GOSAT-TIR spectra (black) over TCCON station Bialystok and from the MACC

repository (orange) scaled such that the total column equals the corresponding TCCON total column measurement. The bars indicate the

spread in the data ensemble. (right) The relative difference between the averaged retrieved GOSAT TIR and MACC methane profiles. It is

noted that the two panels have different horizontal scales.
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Figure 6. (left) Averaging kernel-smoothed profiles from GOSAT daytime measurements over land (black) and MACC (orange) at TCCON

station Bialystok. The bars indicate the spread in the data ensemble. (right) The relative difference between the profiles. The bars pertain to

the 1σ uncertainty of the averaged ratio, derived from the instrument noise propagation.

behaviour is reversed; daytime-land measurements are systematically higher. For the interpretation, we have to consider the

different retrieval sensitivity as indicated in Fig. 2. During day over land, the thermal contrast in the lower atmosphere is larger

than for the other three cases and therefore the retrieval sensitivity increases accordingly. This enhancement goes along with

larger biases.

Overall we conclude that the biases in the retrieved CH4 profiles are significant and requires a mitigation strategy. A straight-5

forward scaling of the retrieved profile by a certain factor is not sufficient because it cannot account for the altitude dependent

biases for both xγ and xCH4 . Therefore, in the next section we will discuss a scheme to correct radiometrically the GOSAT-TIR

measurements as part of the inversion.
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Figure 7. Histogram of the methane profile bias over ten different TCCON stations listed in Table 1, with the MACC/TCCON profiles as

reference. The data are divided for different scenes; land and ocean scenes during daytime (respectively orange and cyan) and nighttime

(respectively black and blue). In the left panel the deviation is shown for an altitude of ≈ 2 km and in the right panel of ≈ 9 km.
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4 Bias correction scheme

Instead of correcting the biases at the level of geo-physical methane profiles, we consider an approach to quantify spectral

features of radiometric biases of the GOSAT-TIR measurements. The observed methane bias finds its origin in the discrepancy

ey between forward model F and measurement r in Eq. (1). Although we cannot distinguish between forward model errors

and instrumental errors, we can investigate the spectral properties of this discrepancy. Fixing the CH4 and N2O profile to5

accurate a priori knowledge, we retrieve all other parameters of the state vector, i.e. the skin temperature, a spectral shift, the

total columns of H2O and HDO, and an effective total H2O column to calculate the water-continuum independently from the

water vapour absorption lines. Analysing spectral fit residuals guides us to identify spectral components of the radiometric

bias, that interfere with the atmospheric methane absorption. For this purpose we used CH4 and N2O data from the HIPPO

(HIAPER Pole-to-Pole Observations) campaigns II and III (held in, respectively, October 2009 and March 2010). The HIPPO10

data contains vertical profiles of many relevant species and atmospheric parameters, setting strong constraints on the estimated

state of the atmosphere. Although most of the measurements are taken over the Pacific ocean, in both campaigns vertical profiles

have also been recorded over Northern America, and, in the case of campaign III, also over New Zealand. Therefore, these

campaigns seem to suit our need to include as many as possible different scenes to investigate systematics in spectral residuals.

With the co-location criteria (∆lat = 5◦, ∆lon = 8◦, and ∆t = 2 hrs), the amount of unique HIPPO-GOSAT measurement15

pairs is ≈ 300.

Typically, the spectral residuals of this fit are very small, as can be seen in Figure 8. In the second panel, the noise level of

a single measurement is indicated by the dashed line (7× 10−8 W/m2 sr cm−1). The residual averaged over all co-located

HIPPO-GOSAT pair is depicted in the third panel. Note that the spectral bias is less than 1% of the continuum level at

1210 cm−1for the depicted spectrum, but causes biases in the retrieved methane product up to 10% at 9 km altitude.20

The comparison of the second and third panel of Fig. 8 indicates that most residuals average out for larger data sets. This may

be due to random noise contributions but also spectral features which change from observation to observation in a non-random

manner are suppressed by the averaging. Here the principal component analysis (PCA) provides an adequate mean to detect

non-random contributions in the fit residuals. It is based on an eigenvalue analysis of the covariance matrix of the underlying

data set. The first principal component corresponds to the eigenvector with the largest possible variance, and for each succeed-25

ing component the variance degrades to lower values. By definition, the different principal components are uncorrelated.

Let X be the data matrix, consisting of 300 spectral residuals for all co-located HIPPO-GOSAT pairs, assuming that the

mean residual is subtracted. Its covariance matrix C is then

C = XXT/(n− 1) , (14)

which is symmetric and the eigenvalue problem can therefore be written as30

C = VLVT, (15)

with L a diagonal matrix with the eigenvalues of C and V the set of eigenvectors. When L contains the eigenvalues in

decreasing order, then the ith principal component is the ith column of V.
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Figure 8. Comparison of GOSAT-TIR measurement with a forward model calculation based on methane profiles as measured during the

HIPPO campaigns. The upper panel shows a single GOSAT measurement (black) and the forward calculation based on the co-located HIPPO

measurement (orange), and in the second panel the residual is shown. The third panel depicts the average residual of all 300 GOSAT-HIPPO

pairs used to centre all residuals in the principal component analysis. In the bottom panel the first principal component of this analysis is

pictured.

The first principal component is shown in the fourth panel of Fig. 8. The strongest spectral features in this component

show above 1250 cm−1and follow mostly N2O and CH4 lines. In fact, this wavelength range corresponds to the part of the

measurement where N2O and CH4 are strongly interfering. Between 1210 cm−1and 1250 cm−1some weak features coincide

with water and methane lines. These coincidences may point to errors in the spectroscopy databases. However, they may also

point to broadband radiometric biases, such as atmospheric continuum contributions or non-linear instrumental effects. The5
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impact of such effects on the spectrum is a function of the total optical density, explaining the different size of the spectral

features in the component below and above 1250 cm−1.

4.1 Bias-corrected methane retrievals

The first step of assessing the radiometric bias comprises the subtraction of the averaged residual from every GOSAT measure-

ment before conducting a retrieval. In addition, we modify the forward model F by5

F̃ (x) = F (x) +
∑

i

aipi (16)

adding principal components pi with the amplitudes ai to be determined by the retrieval. Obviously, every addition of a

principal component improves the spectral fit quality indicated by smaller χ2 values, but on the other hand, it increases noise

propagation and instability of the retrieval. Therefore, a trade-off needs to be made between bias-mitigation and reduced

precision. Adding the first principal component to F̃ , improves the overall shape of the inferred methane profile, lowering10

the overall bias. The noise propagation, on the other hand, is only slightly increased with respect to the retrievals without this

retrieved scaling parameter. Accounting for additional principal components leads hardly to any improvement in the bias but

does increase the standard deviation in the differences between retrieved and reference methane profiles and is henceforward

not considered in this study.

The effect of including this bias-correction scheme in the retrieval algorithm on the retrieved methane profile is depicted in15

Figure 9. On the left in this figure the profiles from bias-corrected GOSAT-TIR measurements are depicted for different scenes

with the scaled MACC profile as a reference. It is noted that only the MACC profile for the daytime land case is depicted

as the profiles for the other scenes are very similar and have been left out for clarity. On the right the averaged difference

between GOSAT and MACC is depicted and it clearly the bias in the profiles is almost fully corrected for. The bias is within

2% over the whole altitude range. Also the spread in the ensemble, given by the error bars is lower than in the non-corrected20

case (from ≈ 0.10 ppmv to ≈ 0.08 ppmv at 9 km). In addition, the different retrieval performances for daytime and nighttime

measurements, observations over land and ocean have been reduced and the daytime measurements over land are in line with

the other three types of measurements.

For the other TCCON stations similar behaviour is found as can be seen in Fig. 10. For the retrieved methane concentration

at 9 km altitude, the mean bias is -0.08% and the 1σ station-to-station variation in the bias is 0.76%. At this altitude, the25

discrepancy between daytime over-land scenes and the other three scenes is small (mean biases are respectively -0.31% and

-0.01%; station-to-station variations are 0.83% and 0.72%). For 2 km altitude, we find that daytime over-land measurements

show a systematic positive bias over all TCCON stations (mean bias is 0.97% with a station-to-station variation of 0.53%),

whereas for the nighttime and ocean measurements, the corresponding biases are much smaller (mean of 0.07% and a variation

of 0.16%). The daytime over-land biases may be explained by the fact that the HIPPO measurements are predominantly30

performed over the Pacific, and the few over-land measurements are not sufficiently different to fully account for the variability

in the spectral residuals of all different scenes. Therefore, it may be that the correction is most applicable for scenes with a
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Figure 9. (left) Retrieved methane profiles from GOSAT-TIR measurements over TCCON station Bialystok with the bias-correction scheme

included in the retrieval algorithm. The data are divided for different scenes; land and ocean scenes during daytime (respectively orange

and cyan) and nighttime (respectively black and blue). The dashed lines refer to the MACC profiles for the daytime land scenes, and are

very similar to the profiles for the other 3 scenes and have been left out for clarity. (right) The relative difference between the GOSAT-TIR

retrievals and the MACC profiles.
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Figure 10. Bar-graphs for the relative deviation in the partial methane column at ≈ 2 km altitude (left) and ≈ 9 km (right) for ten different

TCCON stations. The data are divided for different scenes; land and ocean scenes during daytime (respectively orange and cyan) and

nighttime (respectively black and blue).

19

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-173
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 13 June 2017
c© Author(s) 2017. CC BY 3.0 License.



Table 1. Total methane column retrieval results after applying the bias-correction scheme for scenes over land during daytime. The first three

columns pertain to the cloud filter based on fit parameters of GOSAT-TIR retrievals, whereas the last three columns refer to the filtering

exploiting spectral features in GOSAT SWIR and NIR spectra. The average remaining bias is given for each TCCON station used in the

current study along with the 1σ spread and the number of measurements passing the particular filter. The last two rows show the values for

the whole ensemble.

Station TIR filtered SWIR filtered

b σ n b σ n

Bialystok 0.4 2.2 3370 0.8 1.4 355

Sodankyla 0.7 1.7 486 0.9 0.8 9

Bremen 0.1 2.1 1366 0.2 1.2 212

Darwin 1.3 2.1 1542 0.5 1.1 463

Lamont 0.6 2.1 6985 0.4 1.2 2307

Lauder 1.3 3.1 187 0.4 1.8 27

Orleans 0.1 1.9 3023 0.4 1.1 384

Reunion 0.7 1.8 194 0.9 1.1 48

Wollongong 0.9 2.4 2121 0.6 1.3 407

Park Falls 0.3 2.2 4367 0.6 1.3 947

b̄ 0.6 2.2 0.6 1.2

σb 0.4 - 0.2 -

low thermal contrast. In the future, this shortcoming of our bias correction can be improved upon by an extended ensemble of

airborne measurements, including over-land CH4 and N2O measurements.

After establishing the bias correction, we finally consider the efficiency of the TIR cloud filter as discussed in Sec. 3.4. For

GOSAT daytime over-land measurements, we compare the efficiency of the TIR cloud filter with that of the RemoTeC cloud

clearing for the SWIR retrievals. Table 1 displays the average bias b and its standard deviation σ for GOSAT-TIR retrievals5

applying the two different cloud filters to the data. From the table it can be seen that the number of scenes n passing the TIR

filter is significantly higher than for the SWIR filter. The average results are consistent with both filtering methods as the mean

bias of all stations is b̄= +0.6% for both cloud filters. However, the station-to-station scatter in the bias σb, defined as the

standard deviation of the mean biases per station, is 0.4% and 0.2% for the TIR and SWIR cloud filtered data, respectively.

Also the scatter in the data are significantly lower in case of the SWIR cloud filter (1.2%) compared to the TIR filter (2.2%). It10

is noted that constraining the TIR filter criteria more stringently does not lead to a reduced scatter.
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For the daytime land retrievals one may therefore consider to apply the SWIR filtering. However, this is not possible for

ocean and nighttime observations. For consistency reasons we only consider TIR cloud filtering for all observations in this

study.

We conclude that the cloud filter using SWIR spectral features is more able to filter GOSAT observations with respect to

cloudiness than the TIR data filtering. However, on average both cloud filters are consistent and the cloud filter using TIR data5

does not introduce additional biases in the methane product.

5 Conclusions

Methane profile retrievals generally result in a positive bias when retrieved from thermal infrared spectra. In case of GOSAT

TIR, this bias is 4–5% in the total methane column, and can amount to 10% at altitudes where the sensitivity peaks (typically

9 km). To account for this bias, a correction scheme has been developed. It has been shown that a simple additive or multi-10

plicative scheme may result in a sufficiently accurate total methane column product, but that such schemes are insufficient to

account for nonphysical structures in the retrieved profiles. In fact, these structures only yield correct total columns when they

properly cancel. Especially in cases with enhanced methane abundances, in particular close to the surface or at high altitudes,

this presumption may not be valid. In view of inversion schemes to determine methane sources and sinks, it is these scenes with

enhanced methane that are most interesting, but may lead to erroneous values. Moreover, land-ocean transitions and differences15

between day and night are also not fully corrected for with these simple correction schemes in the case of GOSAT-TIR data.

In this study, we have developed a more elaborate bias correction scheme to account for all these aspects in methane re-

trievals from GOSAT-TIR spectra. The scheme is rooted in a principal component analysis of the spectral residuals between

measurement and a forward model run with the best possible knowledge of the state of the atmosphere. Pivotal in this knowl-

edge are CH4 and N2O profiles which have been derived from HIPPO air campaign data. It has been shown that accounting for20

the average spectral residual and including one additional fitting parameter to scale the first principal component is sufficient

to account for the bias within 2% when compared to the MACC methane fields (scaled to TCCON total columns). This is true

for the whole altitude range from ground level to the top of the atmosphere and over all ten TCCON stations considered in

this study. Moreover, the retrieval results from measurements over the ocean and the nighttime measurements over land, are all

consistent with each other. Only at low altitudes, where the measurements have only limited sensitivity, the daytime measure-25

ments over land seem to show a persistent positive bias of≈ 1% at low altitudes. These scenes generally show a larger contrast

between the Earth’s skin temperature and the temperature of the lowest atmospheric levels, with respect to ocean scenes or

nighttime observations. The reason that the bias correction scheme does not fully account for this bias in methane, may lie in

the fact that the HIPPO campaigns are mostly performed over the Pacific, and the daytime land measurements may therefore

be under-represented in the data set of residuals to be accounted for in a principal component analysis.30

Nevertheless, the average bias in the retrieved GOSAT-TIR methane profile is less than 2% over the full altitude range, for

all scenes over all TCCON stations, during day and night, when compared with MACC/TCCON values.
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